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c© Società Italiana di Fisica
Springer-Verlag 2001

Spontaneous scale symmetry breaking
in 2+1-dimensional QED at both zero and finite temperature

M.E. Carrington1,a, W.F. Chen2,b, R. Kobes3,c

1 Department of Physics, Brandon University, Brandon, Manitoba, R7A 6A9 Canada
2 Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
3 Department of Physics, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9 Canada

Received: 17 August 2000 / Revised version: 24 November 2000 /
Published online: 23 January 2001 – c© Springer-Verlag 2001

Abstract. A complete analysis of dynamical scale symmetry breaking in 2 + 1-dimensional QED at both
zero and finite temperature is presented by looking at solutions to the Schwinger-Dyson equation. In
different kinetic energy regimes we use various numerical and analytic techniques (including an expansion
in large flavour number). It is confirmed that, contrary to the case of 3+1 dimensions, there is no dynamical
scale symmetry breaking at zero temperature, despite the fact that chiral symmetry breaking can occur
dynamically. At finite temperature, such breaking of scale symmetry may take place.

1. Introduction

Scale symmetry cannot be an exact symmetry in elemen-
tary particle physics, since it would will enforce all the
observed particles to be massless or to have a continu-
ous mass spectrum [1]. This explicitly contradicts exper-
imental observation. Therefore, scale invariance must be
broken.

In general, there are two kinds of scale symmetry
breaking mechanisms. One is explicit breaking which oc-
curs when dimensional parameters are present in the clas-
sical action. The other is anomalous scale symmetry break-
ing which happens at quantum level due to the necessity
of implementing renormalization and the consequent oc-
currence of dimensional transmutation: a new momentum
scale automatically arises. In fact, this new scale parame-
ter should be regarded as one of the most important ele-
ments underlying a quantum field theory, since in a quan-
tum field theory it is the first derivative of the interaction
coupling with respect to the scale parameter, the beta
function, rather the coupling itself, that can be explicitly
determined. The arising of the scale parameter makes the
interaction coupling change with the kinetic energy. Thus
in different kinetic energy regions, distinct physical phe-
nomena can be present even though they are dominated by
the same theory. One typical example is four-dimensional
Quantum Chromodynamics (QCD), where at the high en-
ergy relative to the QCD scale parameter, the quarks be-
have almost as free particles. This asymptotic freedom
property of quarks leads to the deep inelastic scattering
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cross sections exhibiting a scaling behaviour. At the low-
energy level the quarks are confined and chiral symmetry
breaking occurs.

However, in some cases spontaneous scale symmetry
breaking is also possible. In a quantum field theory with
no scalar field such as QCD and spinor electrodynamics
etc, spontaneous scale symmetry breaking usually takes
place in the strong coupling region near a non-trivial fixed
point of the beta function, and occurs in conjunction with
spontaneous chiral symmetry breaking [2]. It is well known
that the dynamical breaking of chiral symmetry is char-
acterized by the fermion condensation 〈ψ̄ψ〉, and that its
occurrence is determined by the composite operator effec-
tive potential generated by quantum corrections, a func-
tion of 〈ψ̄(x)ψ(y)〉 [3]. At the fixed point, the beta func-
tion vanishes and the theory will become scale invariant if
there are no dimensional parameters present in the classi-
cal theory [4]. In particular, the running of the couplings
freezes at the fixed point and the anomalous scale sym-
metry breaking ceases to be a dominant effect. Accord-
ing to the arguments given in [2], if the dynamical chiral
symmetry breaking occurs when the anomalous breaking
of scale symmetry is not dominant, then chiral symme-
try breaking may imply the spontaneous breaking of scale
symmetry. It should be emphasized that the dynamical
breaking of chiral symmetry does not inevitably result in
the spontaneous breaking of scale symmetry, since the in-
stability of the composite operator effective potential un-
der chiral symmetry does not necessarily lead to vacuum
degeneracy with respect to scale symmetry. In this case,
the dynamical breaking of chiral symmetry only results
in the anomalous breaking of scale symmetry. A method
to identify spontaneous scale symmetry breaking is to ob-
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serve whether there exists a hierarchy between the scale
parameter, which governs the running of the coupling con-
stant and characterizes the anomalous breaking of scale
symmetry, and the dynamically generated fermion mass.
If there exists such a hierarchy, chiral symmetry breaking
can induce spontaneous scale symmetry breaking. Other-
wise, the dynamically generated fermion mass only leads
to anomalous scale symmetry breaking. The intuitive rea-
son for this is that the scale parameter characterizes the
dimensional transmutation and the consequent anoma-
lous scale symmetry breaking. Thus the magnitude of the
dynamically generated fermion mass associated with the
anomalous scale breaking should be of the same order as
the scale parameter, while if the dynamically generated
fermion mass has a hierarchy with the scale parameter,
it should not attach to the anomalous breaking of scale
symmetry and must result from the spontaneous break-
ing of scale symmetry. A more rigorous but less practical
way to judge the spontaneous breaking of scale symme-
try is to check the fermion scattering amplitude to see
whether there exists a massless scalar particle called a dila-
ton, since according to Goldstone’s theorem, there must
arise a massless Goldstone particle with the same prop-
erties as the generator of the scale transformation as a
consequence of the spontaneous breaking of scale symme-
try. One typical example is the scale symmetry breaking
connected with the chiral symmetry breaking of four di-
mensional QCD [2]. Lattice simulation indicates that the
scale of chiral symmetry breaking for fermions in higher
dimensional representations of the gauge group is much
higher than the confinement scale [5]. This fact was fur-
ther confirmed by checking the effective potential for the
composite operator 〈ψ̄ψ〉 together with the solution of the
renormalization group equation [6]. Thus there is sponta-
neous breaking of scale symmetry associated with fermion
condensation.

Some time ago it was found that three-dimensional
massless quantum electrodynamics (QED) can exhibit dy-
namically induced spontaneous chiral symmetry breaking
[8,9]. Compared with four-dimensional quantum field the-
ories, three-dimensional QED has several special features.
First, it has an intrinsic dimensional parameter, the gauge
coupling, that plays the role of the scale parameter in four-
dimensional QCD [8]; Second, the beta function of three-
dimensional quantum electrodynamics vanishes and hence
the coupling constant stays fixed along the whole trajec-
tory of renormalization group flow. Thus there will arise
no dimensional transmutation and consequently anoma-
lous scale symmetry breaking does not happen perturba-
tively. These facts seems to suggest that any spontaneous
chiral symmetry breaking would induce spontaneous scale
symmetry breaking. However, it was argued implicitly in
[8] that there is no spontaneous breaking of scale symme-
try at all in three-dimensional QED, despite the occur-
rence of dynamical chiral symmetry breaking. This situa-
tion has caused considerable confusion. In this paper we
try to clarify this point, especially at finite temperature.
We argue that the introduction of temperature, which car-
ries a mass dimension, drastically changes the zero tem-

perature features of three-dimensional massless QED. In
particular, all of the analysis of spontaneous scale sym-
metry breaking at zero temperature is not valid at finite
temperature. Consequently, contrary to the zero temper-
ature case, spontaneously scale symmetry breaking may
occur at finite temperature.

2. Scale symmetry of 2+1-dimensional QED

As the first step, it is necessary to clarify the definition of
classical scale symmetry. The classical action of massless
2 + 1-dimensional QED with Nf flavours in the covariant
Lorentz gauge is [8]

S =
∫
d3xL (1)

=
∫
d3x

Nf∑
i=1

ψ̄i (i∂/− eA/)ψi − 1
4
FµνF

µν − 1
2ξ

(∂µA
µ)2

 .
The coupling constant has the dimension (mass)1/2 and
thus the theory is actually superrenormalizable. Further,
due to the vanishing beta function, the coupling constant
will remain frozen at quantum level. The existence of such
a coupling implies that the theory has an explicit scale
symmetry breaking. This can be shown as following. Un-
der scale transformation, x′ = e−εx, the field transforms
according to [1]

φ′(x) = T (ε)φ(eεx) ; T (ε) = eεdφ

where ε is the scale transformation parameter and dφ is
the scale dimension of the field φ. Thus the scale transfor-
mations for every fields are

ψ′(x) = eεψ(eεx), A′
µ(x) = e1/2εAµ(eεx) (2)

For an infinitesimal transformation we have

δψi = ε(1 + xµ∂µ)ψi,

δ (∂µψi) = ε(2 + xν∂ν)∂µψi,

δAµ = ε

(
1
2

+ xα∂α

)
Aµ,

δ (∂νAµ) = ε

(
3
2

+ xα∂α

)
∂νAµ, (3)

and consequently

δS = ε
∫
d3x

∂µ(xµL) +
1
2
e

Nf∑
i=1

ψ̄iA/ψi

 . (4)

The second term on the right hand side of (4) is an explicit
violation of scale symmetry. It can be shown, however,
that the theory has an approximate scale invariance at
scales for which the intrinsic energy scale e2Nf can be
ignored [3]. The breaking of scale symmetry in (4) is thus
classical, and in the following we will examine whether or
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not quantum corrections lead to a dynamical violation of
the scale symmetry.

The conserved quantity corresponding to above special
scale symmetry can be defined in the standard way. The
general variation of the classical action is

δS[φ] =
∫
d3x

[(
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

)
δφ

+∂µ

(
∂L

∂(∂µφ)
δφ

)]
. (5)

For the scale transformation listed in (3), with the fields
φ = (ψ̄, ψ,A) satisfying the classical equations of motion,
(3) and (5) yield∫

d3x ∂µ

[
dφ

∂L
∂(∂µφ)

φ+ xν

(
∂L

∂(∂µφ)
∂νφ− gµνL

)]

−1
2
e

Nf∑
i=1

ψ̄iA/ψi = 0. (6)

Defining the canonical energy-momentum tensor and the
dilatation current in the same way as for the four dimen-
sional scale invariant theory,

θ(can)
µν =

∂L
∂(∂µφ)

∂νφ− gµνL,

dµ = dφ
∂L

∂(∂µφ)
φ+ xνθ(can)

µν , (7)

we can write (6) in the following form,∫
d3x∂µd

µ =
∫
d3x

1
2
e

Nf∑
i=1

ψ̄iA/ψi. (8)

An explicit calculation gives

dµ = −1
2
FµνA

ν − 1
2ξ
Aµ∂νA

ν + xνθ(can)
µν , (9)

where

θ(can)
µν =

i

2

Nf∑
i=1

(
ψ̄iγµ∂νψi − (∂νψ̄i)γµψi

) − Fµρ∂νA
ρ

−1
ξ
∂νAµ∂ρA

ρ − δµν

[
i

2

Nf∑
i=1

(
ψ̄iγρ∂

ρψi

−(∂ρψ̄i)γρψi

) − e
Nf∑
i=1

ψ̄iA/ψi

−1
4
FλρF

λρ − 1
2ξ

(∂ρA
ρ)2

]
. (10)

Using the classical equations of motion,

(i∂/− eA/)ψi = 0, i(∂µψ̄i)γµ + eψ̄iA/ = 0,

∂νFνµ +
1
ξ
∂µ(∂αA

α) −
Nf∑
i=1

eψ̄iγµψi = 0, (11)

we can easily verify

∂µθ(can)
µν = 0, θ(can)µ

µ = −L +
Nf∑
i=1

eψ̄iA/ψi, (12)

∂µd
µ = θ(can)µ

µ + L − 1
2

Nf∑
i=1

eψ̄iA/ψi

=
1
2

Nf∑
i=1

eψ̄iA/ψi. (13)

When discussing anomalous scale symmetry breaking it
is convenient to define an “improved” energy-momentum
tensor θµν [10] so that

dµ = xνθµν − ∂νKµν (14)

with θµν = θνµ and Kµν = −Kνµ. It is easy to show that

∂µθµν = ∂µθ(can)
µν = 0, θµ

µ = ∂µd
µ =

1
2

Nf∑
i=1

eψ̄iA/ψi. (15)

The trace of the energy-momentum tensor will stay the
same at the quantum level since the beta function van-
ishes and no trace anomaly or anomalous scale symme-
try breaking arises [4]. The explicit relation between the
canonical and the improved energy momentum tensors is
not so straightforward as in the case of four-dimensional
scalar field theory [10]. It will probably involve a nonlocal
form of the fields [11].

The conserved charge corresponding to the scale sym-
metry is D =

∫
d3xd0 and the standard definition of spon-

taneous scale symmetry breaking is given by D̂|0〉 = 0,
where D̂ denotes the corresponding quantum operator
for the dilatation generator. For the dynamical sponta-
neous breaking of scale symmetry, we should calculate the
quantum effective potential composed of the expectation
value of the composite operator ψ̄(x)ψ(y) [3] and observe
whether the fermionic mass coming from the instability of
this effective potential under chiral symmetry has a hier-
archy with the scale parameter [2].

The above discussion has clearly shown the difference
between scale symmetry and chiral symmetry. Scale trans-
formation invariance is a space-time symmetry, and is
much more stringent than chiral symmetry in protecting
the theory from receiving quantum corrections: quantum
correction can explicitly break scale symmetry much more
easily than chiral symmetry. This is the reason that the
spontaneous breaking of chiral symmetry does not neces-
sarily lead to the spontaneous breaking of scale symmetry,
despite the fact that their common feature is the dynam-
ical generation of a fermion mass term. Only when a fur-
ther dynamical condition is satisfied (that the dynamical
fermionic mass has a hierarchy with the scale parameter)
does the dynamical breaking of chiral symmetry imply the
spontaneous breaking of scale symmetry.
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3. Scale symmetry breaking
at zero temperature

To explore the dynamical breaking of chiral symmetry, we
need to solve the Schwinger-Dyson equation (SDE) for the
fermion self-energy

Σ(p) = −p/A(p) +B(p), p≡|p|. (16)

The SDE for the fermion self-energy can be obtained from
extremizing the Cornwall-Jackiw-Tomboulis potential
with respect to B(p). Thus, any nontrivial solution to the
SDE indicates the spontaneous breaking of chiral sym-
metry. However, it is notorious that the Schwinger-Dyson
equations are a set of closed instantaneous integral equa-
tions which are impossible to solve completely. Some ap-
propriate approximation must be utilized. The simplest
choice is the rainbow (ladder) approximation, which is
consistent with the leading order of the large flavour num-
ber Nf expansion [8]. The Ward identity between the
fermion self-energy and the fermion-photon vertex
requires that A(p) = 0 under this approximation. In the
rainbow approximation the gap equation in Landau gauge
(ξ = 0) reduces to [8,9],

B(p) =
e2

2π2p

∫ ∞

0
dq

qB(q)
q2 +B2(q)

ln
p+ q +Nfe

2/8
|p− q| +Nfe2/8

. (17)

For p�Nfe
2 or p�Nfe

2 the above integral equation can
be converted into a second order nonlinear differential
equation [8]

d

dp

[
dB(p)
dp

p2(p+Nfe
2/8)2

2p+Nfe2/8

]
= −Nfe

2

π2Nf

p2B(p)
p2 +B2(p)

. (18)

The fermion condensate is given by

〈ψ̄(p)ψ(−p)〉∼Tr[−p/+B(p)]−1 =
4B(p)

p2 +B2(p)
. (19)

In the region B(p)�p�Nfe
2 (18) can be linearized and

an analytical solution can be found. When Nf < 32/π2,
the solution has the form

B(p) =
(Nfe

2)3/2

√
p

× sin

[
1
2

√
32
Nfπ2 − 1 ln

(
p

B(0)

)
+ δ

]
, (20)

where δ is a phase factor which may depend on the pa-
rameter Nf . The boundary conditions

0≤B(0) <∞ ; lim
p→Nf e2

[
p
dB(p)
dp

+B(p)
]

= 0 (21)

together with (20) determine that the dynamically gener-
ated mass defined at p = 0 is [8]

B(0)∼Nfe
2 exp

[
− 2(nπ − δ)√

32/(π2Nf ) − 1

]
. (22)

This solution demonstrates the existence of a critical
flavour number N c

f = 32/π2 for the restoration of chiral
symmetry.

Despite some dispute about the existence of N c
f [12], a

striking feature of (22) is that the dynamically generated
mass is of the order of Nfe

2. In fact, this result is not
unexpected since no dimensional transmutation occurs in
QED3 and thus there is no dynamically generated mo-
mentum scale. The dynamical mass can only be associated
with the coupling constant, since the coupling constant is
the only scale parameter of the theory.

In the region p�Nfe
2 (18) cannot be linearized, but

the asymptotic form of the solution has been obtained [8],

B(p)∼ (Nfe
2)3

p2

[
1 −

(
1
8

+
2

3Nfπ2

)
Nfe

2

p
+ · · ·

]
, (23)

and the solution for the truncated lower-integral equation
of (17) is [8]

B(p)∼ (Nfe
2)3

p(p+Nfe2/8)

[
p

p+Nfe2/8

]8/(π2Nf )

. (24)

The solution (24) is only valid for p�Nfe
2 and becomes

unreliable when p∼Nfe
2. Equations (23) and (24) imply

that B(p)∼(Nfe
2)3/p2. This result represents a dynam-

ically generated mass function and thus leads to chiral
symmetry breaking. Note that the solution (24) has noth-
ing to do with the 1/Nf expansion since this expansion
does not play any role in this kinetic energy region.

When p∼Nfe
2 it is difficult to get an analytical in-

formation about the solution to the SDE (17) and the
only way to proceed is to use a numerical simulation. The
numerical solution given in [8] shows that when p goes
past Nfe

2 moving in the direction of increasing p, B(p)
sharply falls to zero. In combination with the behaviour
of the solutions to the SDE in the cases p�Nfe

2 and
p�Nfe

2, one concludes that in the region p∼Nfe
2, B(p)

changes smoothly from its slowly falling form at p�Nfe
2

to a sharply falling form at p�Nfe
2 [8].

Based on these results, we can observe whether or not
a dynamical violation of scale symmetry occurs, keep-
ing in mind the discussion after (4) concerning the this
symmetry at the classical level. In the momentum range
p� Nfe

2 (22) indicates that the dynamical fermion mass
is proportional to Nfe

2 and thus that there is no hier-
archy between the energy scale Nfe

2 and the dynamical
mass B(0). Therefore, it is not possible for a dynamical
violation of scale symmetry to take place. Note that if
we approach the critical flavour number, the dynamical
mass approaches zero and chiral symmetry breaking is
lost, which means that there is still no possibility of dy-
namically broken scale symmetry. In the momentum range
p � Nfe

2 we again have spontaneous chiral symmetry
breaking since the dynamical mass function B(p) behaves
like 1/p2. However there exists no hierarchy between the
dynamical mass and the scale Nfe

2 in all cases and hence
no dynamical violation of scale symmetry breaking occurs.
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4. Scale symmetry breaking
at finite temperature

Despite the fact that there is no spontaneous breaking of
scale symmetry at zero temperature, it is possible that it
could take a place at finite temperature. An intuitive rea-
son for this is as follows: temperature is a parameter with
mass dimension and thus the dynamically generated mass
may depend not only on the coupling constant, but also
on this new dimensional parameter. This new dimensional
parameter makes it possible that there will be a hierarchy
between the dynamical mass and the momentum scale
Nfe

2 provided by the coupling constant. Moreover, the
coupling constant at the quantum level may be tempera-
ture dependent, and hence contrary to the zero temper-
ature case, there will arise a non-vanishing beta function
which depends on the temperature. If this beta function
has a non-trivial fixed point, then a similar observation as
in the case of four-dimensional QED at zero temperature
could reveal the occurrence of the spontaneous breaking
of scale symmetry.

As in the zero-temperature case, we make use of the
Schwinger-Dyson equation to observe the dynamical mass
function. The Schwinger-Dyson equation for the fermion
self-energy at finite temperature Σ(p0, |p|), in Landau
gauge reads [12]

Σ(p0, |p|) = −p0γ0A(p0, |p|) − p·γA(p0, |p|) +B(p0, |p|)

= −e
2

β

∞∑
n=−∞

∫
d2q

(2π)2
γµS(q0, |q|)ΓνD

µν

×(p0 − q0, |p − q|, β), (25)

where β = 1/(kBT ), p0 = (2m + 1)π/β and q0 = (2n +
1)π/β. To leading order in the 1/Nf expansion, the lad-
der approximation is appropriate: Γµ can be replaced by
the bare vertex eγµ, and the propagator Dµν(p0,p, β) is
approximately evaluated in the chain approximation of
fermionic loop [12]. The Ward identity further requires
that A(p0, |p|) = 0. The dynamical mass function is ob-
tained by taking the trace of (25)

B(p0, |p|, β) =
e2

β

∞∑
n=−∞

∫
d2q

(2π)2
D(p0 − q0, |p − q|, β)

× B(q0, |q|, β)
q2 +B2(q0, |q|, β)

(26)

where D(p0, |p|, β)≡Tr[γµDµν(p0, |p|, β)γν ]/8 [13]. The
closed integral equation (26) for B(p0, |p|, β) has been nu-
merically solved in an instantaneous exchange approxima-
tion in which the p0 dependence of the vacuum polariza-
tion tensor has been ignored. As a consequence,
B(p0, |p|, β) also becomes frequency independent. In the
approximation of considering only the µ = ν = 0 compo-
nent, the propagator takes the form [12],

Dµν(p − q, β) =
δµ0δν0

|p − q|2 +Π(|p − q|, β)
, (27)

and

Π(|q|, β) =
2Nfe

2

πβ
(28)

×
∫ 1

0
dx ln

{
2 cosh

[
β/2|q|

√
x(1 − x)

]}
.

After the summation over n is performed, (26) becomes
[13]

B(|p|, β) =
e2

8π2

∫
d2q

B(|q|, β)
(p − q)2 +Π(|p − q|, β)

×
tanh

[
β/2

√
q2 +B2(|q|, β)

]
√

q2 +B2(|q|, β)]
. (29)

The numerical solutions of (29) have been explicitly
obtained in the kinetic energy regions |p| < kBT < Nfe

2

and kBT < |p| < Nfe
2 [13]. The analysis given below will

show that these are the only two regions in which dynami-
cal chiral symmetry breaking takes place, thus they are the
only regions that need to be considered. The numerical so-
lution shows that there exists both a critical temperature
and a critical flavour number, above which the dynamical
mass vanishes and chiral symmetry breaking is restored.
The existence of a critical temperature implies that we
do not expect chiral or scale symmetry breaking at high
temperature, and thus that it is sufficient to consider the
range kBT < kBTc < Nfe

2.
In the kinetic energy region |p| < kBT < Nfe

2, the
dynamical mass defined at |p| = 0 is a function of Nfe

2

and kBT . Due to some special features of the numerical
calculation, the numerical solution can only describe the
dependence of the mass on one of the two independent
parameters (T and Nf ) at a time. When we hold the tem-
perature T fixed, the numerical solution implies that the
dynamical mass takes the following form [13]

B(0, β, e2Nf ) ∝Nfe
2 exp

[
− C(T )√

Nc(T )/Nf − 1

]
, (30)

where C(T ) is a certain temperature dependent function
and Nc(T ) is the critical flavour number (since B(0, β,
e2Nf )→0 as Nf→Nc). Equation (30) seems to suggest
that no spontaneous breaking of scale symmetry is in-
duced at any temperature since no matter how the tem-
perature varies, the dynamical mass is always of order
Nfe

2. However, when we fix Nf and look at the numeri-
cal solution for the dynamical mass as a function of T we
have [13],

B(0, β, e2Nf ) ∝ (Nfe
2)1−x(Nf ) [kB (Tc − T )]x(Nf ) ;

kBT ∼ 10−3Nfe
2. (31)

It has been shown that when 1 < Nf < 2, the exponent
x has the value 0.4 < x(Nf ) < 0.6 [13]. Equation (31)
not only explicitly shows the existence of the critical tem-
perature Tc, but also reveals that when T→Tc the dy-
namical mass B(0, β,Nfe

2) is very small in comparison
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with the intrinsic energy scale Nfe
2. Thus a gap between

the dynamical mass and the energy scale Nfe
2 appears.

This observation implies that spontaneous scale symme-
try breaking occurs in the region |p| < kBT < Nfe

2. Note
also that, as stated above, the solution (31) indicates the
existence of a critical temperature Tc and thus that at the
high temperature T > Tc there will be no spontaneous
breaking of chiral symmetry or of scale symmetry.

When kBT < |p| ≤Nfe
2, the dynamical mass cannot

be defined at |p| = 0. For certain fixed temperatures, the
numerical solution shows that the ratio between the dy-
namical mass function and Nfe

2 decreases to zero when
|p| ∼ Nfe

2 [13] which indicates that there is no chiral sym-
metry breaking. When kBT < |p|�Nfe

2, if the flavour
number is big enough, the numerical solution indicates
that B(|p|, β) ∼ Nfe

2. There is again no dynamical viola-
tion of scale symmetry. However, when the flavour number
is small, the numerical solution shows that there exists a
big gap between the dynamical mass and the scale Nfe

2,
which suggests a dynamical violation of scale symmetry.

There is no information about the dynamical mass in
the the kinetic energy region |p| > Nfe

2 > kBT . How-
ever, if the dynamical mass function is a continuous and
monotonically decreasing function of |p|, then the numer-
ical solution at |p|∼Nfe

2 implies that the dynamical mass
should approach zero in this kinetic energy region. There-
fore in this region chiral symmetry should be restored, and
there should be no dynamical violation of scale symmetry.

The Schwinger-Dyson equation (26) has been solved
numerically beyond the instantaneous exchange approxi-
mation, but the main features of the solutions remain un-
changed [14]. Therefore, the above analysis on the spon-
taneous breaking of scale symmetry is likely to be valid
beyond the instantaneous exchange approximation.

5. Summary and discussion

Keeping in mind the discussion after (4) concerning the
nature of scale symmetry at the classical level, we have
found that the dynamical breaking of scale symmetry is
a very delicate non-perturbative phenomenon. Its occur-
rence is not easy to identify since in most situations
anomalous scale symmetry breaking prevails. In this pa-
per we have given a detailed analysis of spontaneous scale
symmetry breaking in 2+1-dimensional QED based on so-
lutions to the Schwinger-Dyson equations for the fermion
self-energy at both zero and finite temperature. In the case
of zero temperature we show explicitly that scale symme-
try breaking cannot be dynamically induced despite the
fact that chiral symmetry breaking occurs. The main rea-
sons for this are the super-renormalizability of the the-
ory and the perturbative ultraviolet finiteness of 2 + 1
dimensional QED. These two facts eliminate the possibil-
ity for dimensional transmutation to occur and thus the
only available scale parameter is the coupling constant.
Consequently, the dynamical mass must be proportional
to the square of the coupling constant. The explicit solu-
tions of the SDE show that spontaneous breaking of scale

symmetry, in the sense of (4) and the ensuing discussion,
does not occur.

The finite temperature case contains new physics. The
dynamical spontaneous breaking of chiral symmetry only
occurs in the kinetic energy region |p| < Nfe

2, and only in
the case kBT < Nfe

2 with kBT < kBTc and Nfe
2 < Nce

2

(Nc and Tc being the critical flavour number and criti-
cal temperature to restore chiral symmetry). When |p| <
kBT < Nfe

2, the numerical solution to the Schwinger-
Dyson equation reveals that scale symmetry breaking may
be induced dynamically, since there arises a hierarchy be-
tween the dynamical mass and the energy scale Nfe

2.
When kBT < |p| < Nfe

2, in the case of small flavour
number, there is also an indication that spontaneous scale
symmetry breaking may take place.

It should be emphasized, however, that the above con-
clusions about the phase structures of scale symmetry are
based on numerical solutions which are obtained by mak-
ing some specific choices for the values of parameters and
techniques used to solve the Schwinger–Dyson equation
(16). Other, more elaborate ansätzes, such as ones involv-
ing more complicated vertex functions and subsequently
non–trivial fermionic wave–function renormalizations, can
also be used, and provide a valuable check on the consis-
tency and completeness of these solutions [14]. As such,
these results should only be viewed as qualitative. A rig-
orous method to judge the spontaneous breaking of scale
symmetry is to calculate the fermion scattering amplitude
and observe whether it possesses a pole indicating the ex-
istence of the dilaton.
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